
Math 307 - Differential Equations - Spring 2017
Exam 2 Solutions

Problem 1.

(a) The characteristic equation is

r3 − 2r2 − 5r + 6 = (r − 1)(r + 2)(r − 3) = 0

so the roots are r = 1,−2, 3 meaning the solution is

y = c1e
x + c2e

−2x + c2e
3x.

(b) The characteristic equation is

r4 + 8r2 − 9 = (r2 + 9)(r2 − 1) = (r2 + 9)(r + 1)(r − 1) = 0

so the roots are r = −3i, 3i,−1, 1 meaning the solution is

y = c1 cos 3x+ c2 sin 3x+ c3e
−x + c4e

x.

(c) The characteristic equation is

r3 − 3r2 + 3r − 1 = (r − 1)3 = 0

so the root r = 1 is repeated 2 times meaning the solution is

y = c1e
x + c2xe

x + c2x
2ex.

(d) The characteristic equation is

r4 + 8r2 + 16 = (r2 + 4)2 = 0

so the roots are r = −2i, 2i and they are each repeated once meaning the solution is

y = c1 cos 2x+ c2 sin 2x+ c3x cos 2x+ c4x sin 2x.

(e) The indicial equation is

m(m− 1)(m− 2) +m(m− 1)− 2m+ 2 = m3 − 2m2 −m+ 2 = (m+ 1)(m− 2)(m− 1) = 0

so the roots are m = −1, 1, 2 meaning the solution is

y = c1x
−1 + c2x+ c3x

2.

(f) The indicial equation is

m(m− 1)(m− 2)(m− 3) + 4m(m− 1)(m− 2) + 3m(m− 1)−m+ 1 = m4 − 2m3 + 2m2 − 2m+ 1

= (m2 + 1)(m− 1)2 = 0

so the roots are m = −i, i, 1 where 1 is repeated once meaning the solution is

y = c1 cos(lnx) + c2 sin(lnx) + c3x+ c4x lnx.
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Problem 2.

(a) Notice that the homogeneous equation here is the same as in Problem 1c, so the only root
is r = 1, repeated two times. Since the root is repeated, we need to use extra powers of x
in the guess for the 3ex part of the particular solution. The guess we should make for the
particular solution is

yp = Ax3ex +B cos 2x+ C sin 2x.

Now, we take the required derivatives

yp = Ax3ex +B cos 2x+ C sin 2x

y′p = 3Ax2ex + Ax3ex − 2B sin 2x+ 2C cos 2x

y′′p = 6Axex + 3Ax2ex + 3Ax2ex + Ax3ex − 4B cos 2x− 4C sin 2x

= 6Axex + 6Ax2ex + Ax3ex − 4B cos 2x− 4C sin 2x

y′′′p = 6Aex + 6Axex + 12Axex + 6Ax2ex + 3Ax2ex + Ax3ex + 8B sin 2x− 8C cos 2x

= 6Aex + 18Axex + 12Ax2ex + Ax3ex + 8B sin 2x− 8C cos 2x

and plug them into the differential equation and gather like terms

y′′′p − 3y′′p + 3y′p − yp = 6Aex + 18Axex + 9Ax2ex + Ax3ex + 8B sin 2x− 8C cos 2x

−3(6Axex + 6Ax2ex + Ax3ex − 4B cos 2x− 4C sin 2x)

+3(3Ax2ex + Ax3ex − 2B sin 2x+ 2C cos 2x)

−(Ax3ex +B cos 2x+ C sin 2x)

= (6A)ex + (18A− 18A)xex + (9A− 18A+ 9A)x2ex + (A− 3A+ 3A− A)x3ex

+(8B + 12C − 6B − C) sin 2x+ (−8C + 12B + 6C −B) cos 2x

= 6Aex + (2B + 11C) sin 2x+ (11B − 2C) cos 2x

= 3ex + 25 cos 2x

This gives us the system of equations

6A = 3

2B + 11C = 0

11B − 2C = 25

Solving this system gives us A =
1

2
, B =

11

5
, and C = −2

5
so the particular solution is

yp =
1

2
x3ex +

11

5
cos 2x− 2

5
sin 2x

and combining with the answer from Problem 1c we get the general solution

y = c1e
x + c2xe

x + c2x
2ex +

1

2
x3ex +

11

5
cos 2x− 2

5
sin 2x.

(b) The homogeneous part of this equation is the same as in Problem 1e, so we get that

y1 = x−1, y2 = x, y3 = x2.
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For a third order equation, we set y = u1y1 + u2y2 + u3y3 and the system of equations for
Variation of Parameters becomes

u′1y1 + u′2y2 + u′3y3 = 0
u′1y

′
1 + u′2y

′
2 + u′3y

′
3 = 0

u′1y
′′
1 + u′2y

′′
2 + u′3y

′′
3 = f(x)

p(x)

where p(x) is the coefficient of the y′′′ term. Thus the system for this problem is

u′1x
−1 + u′2x + u′3x

2 = 0 (1)
−u′1x−2 + u′2 + 2u′3x = 0 (2)

2u′1x
−3 + 2u′3 = x2

x3
= x−1 (3)

Taking 2 times equation (1) and subtracting x2 times equation (3) gives

2u′2x = −x
so

u′2 = −
1

2
.

Now, taking equation (1) and adding x times equation (2) gives

2u′2x+ 3u′3x
2 = 0

and plugging u′2 = −
1

2
in this equation gives

u′3 =
1

3
x−1.

Plus this into equation (3) to get

u′1 =
1

6
x2.

Now we integrate each of the u to get

u′1 =
1

6
x2 =⇒ u1 =

1

18
x3 + c1

u′2 = −
1

2
=⇒ u2 = −

1

2
x+ c2

u′3 =
1

3
x−1 =⇒ 1

3
lnx+ c3

This gives us the general solution

y =

(
1

18
x3 + c1

)
x−1 +

(
−1

2
x+ c2

)
x+

(
1

3
lnx+ c3

)
x2

which if we multiply out we see there’s some x2 terms that we can absorb into c3 so the
simplified answer is

y = c1x
−1 + c2x+ c3x

2 +
1

3
x2 lnx

and that a particular solution is

yp =
1

3
x2 lnx.
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Problem 3.

(a) Making the substitution v =
dy

dx
we also have

dv

dx
=

d2y

dx2
so that the differential equation

becomes

x
dv

dx
= 2(v2 − v).

Separating this gives

1

v2 − v
dv =

2

x
dx.

Since we divided by v2 − v we must check if the zeros of that are constant solutions. The
zeros are v = 0 and v = 1, which we can easily check are actually solutions. Integrating the
above equation (use partial fractions on the v side) gives

ln |v − 1| − ln |v| = 2 ln |x|+ C

and simplifying both sides gives

ln

∣∣∣∣v − 1

v

∣∣∣∣ = lnx2 + C.

Exponentiate both sides to get

v − 1

v
= 1− 1

v
= Cx2

and solve for v to get

v =
1

1− Cx2
.

Since v =
dy

dx
, we need to integrate this one more time. The way this is integrated is different

if C > 0 or C < 0, so we consider the two cases separately (if C = 0, then v = 1 which we
have already accounted for).

(C > 0) Let C = a2, then

v =
1

1− a2x2
=

1

(1 + ax)(1− ax)
=

1/2

1 + ax
+

1/2

1− ax
.

Integrating this gives

y =

∫
v dx =

1

2a
(ln |1 + ax| − ln |1− ax|) + C =

1

2a
ln

∣∣∣∣1 + ax

1− ax

∣∣∣∣+ C.

(C < 0) Let C = −a2, then

v =
1

1 + a2x2

and integrating this gives

y =

∫
v dx =

1

a
arctan ax+ C.



5

Now, the constant solutions v = 0 and v = 1 give the solutions y = C and y = x+C, so the
full collection of possible solutions is

y =
1

2a
ln

∣∣∣∣1 + ax

1− ax

∣∣∣∣+ C

y =
1

a
arctan ax+ C

y = C

y = x+ C

(b) By the chain rule,
d2y

dx2
=

d

dx
(v) =

dv

dy

dy

dx
=
dv

dy
v = v

dv

dy
as desired.

(c) Using what we found in part (b) we again make the substitution v =
dv

dx
and get

yv
dv

dy
= v2 + 2v.

We can separate this by dividing by y(v2 + v) (!!notice that v = 0 and v = −2 are zeros of
the thing we’re dividing by and check that they do satisfy the differential equation!!) to get

1

v + 2
dv =

1

y
dy.

Let’s briefly look at the solutions v = 0 and v = −2. These give the solutions y = c and
y = −2x+ c to the original differential equation.
Back to the differential equation: Integrate both sides

ln |v + 2| = |y|+ c1.

Now we exponentiate both sides and end up with

v + 2 = c1y.

Now, since v =
dy

dx
we will subtract 2 from both sides to get

dy

dx
= c1y − 2

which is separable. Divide by c1y − 2 (!!we should check if this is zero, which it is at y =
c1
2

which is actually covered by the solution coming from v = 0 above!!) to get

1

c1y − 2
dy = dx

which we integrate to get
1

c1
ln |c1y − 2| = x+ c2.

Multiply by c1
ln |c1y − 2| = c1x+ c2

(we can absorb the c1 into the c2) and then exponentiate

c1y − 2 = ec1x+c2 = c2e
c1x.
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This gives the solution

y =
1

c1
(c2e

c1x − 2) .

So, collecting all of the solutions gives

y =
1

c1
(c2e

c1x − 2)

y = c

y = −2x+ c

Problem 4.
(a)

eiθ =
∞∑
n=0

(iθ)n

n!

=
(iθ)0

0!
+

(iθ)1

1!
+

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

=
θ0

0!
+
iθ

1!
− θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
+ · · ·

=

(
θ0

0!
− θ2

2!
+
θ4

4!
+ · · ·

)
+

(
iθ

1!
− iθ3

3!
+
iθ5

5!
+ · · ·

)
=

(
θ0

0!
− θ2

2!
+
θ4

4!
+ · · ·

)
+ i

(
θ

1!
− θ3

3!
+
θ5

5!
+ · · ·

)
=

∞∑
n=0

(−1)nθ2n

(2n)!
+ i

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

= cos θ + i sin θ

(b) Simply plug θ = π into Euler’s formula

eiπ = cosπ + i sin π = −1

so moving the −1 to the other side gives

eiπ + 1 = 0.

Problem 5.

(a) Differentiate W = y1y
′
2 − y′1y2 with respect to x to get

W ′ = y′1y
′
2 + y1y

′′
2 − y′′1y2 − y′1y′2 = y1y

′′
2 − y′′1y2

Since y1 and y2 are solutions of y′′ + p(x)y′ + q(x)y = 0, we have

y′′1 + p(x)y′1 + q(x)y1 = 0

y′′2 + p(x)y′2 + q(x)y2 = 0

which we use to replace y′′1 and y′′2 in the derivative of W . Solving for y′′1 and y′′2 gives

y′′1 = −p(x)y′1 − q(x)y1
y′′2 = −p(x)y′2 − q(x)y2
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now plug them in the equation for W ′:

W ′ = y1y
′′
2 − y′′1y2

= y1(−p(x)y′2 − q(x)y2)− (−p(x)y′1 − q(x)y1)y2
= −p(x)y1y′2 − q(x)y1y2 + p(x)y′1y2 + q(x)y1y2

= −p(x)y1y′2 + p(x)y′1y2

= −p(x)(y1y′2 − y′1y2)
= −p(x)W

the desired equation.
(b) The differential equation W ′ = −p(x)W is separable, and to separate it we divide by W .

Notice that W = 0 is a solution of the differential equation, so now we assume that W 6= 0.
Then after separating we get

1

W
dW = −p(x)dx.

We have the initial value of W at x = x0 is W (x0), so incorporating the initial value into
the solution we have ∫ W

W (x0)

1

s
ds =

∫ x

x0

−p(t)dt

The left-hand integral is∫ W

W (x0)

1

s
ds = (ln |s|)|WW (x0)

= ln |W | − ln |W (x0)| = ln

∣∣∣∣ W

W (x0)

∣∣∣∣
and setting it equal to the right hand integral gives

ln

∣∣∣∣ W

W (x0)

∣∣∣∣ = −∫ x

x0

p(t)dt.

(c) Eponentiate both sides of the last equation in part (b) to get

W

W (x0)
= exp

(
−
∫ x

x0

p(t)dt

)
and multiplying W (x0) to the other side gives

W = W (x0)exp

(
−
∫ x

x0

p(t)dt

)
which is Abel’s formula!


